Как решить дифференциальное уравнение методом операционного исчисления? Операторный метод решения дифференциальных уравнений Дифференциальное уравнение методом операционного исчисления.

Размер: px

Начинать показ со страницы:

Транскрипт

1 Решение дифференциальных уравнений с помощью преобразования Лапласа (операционный метод) Операционное исчисление один из наиболее экономичных методов интегрирования линейных дифференциальных уравнений с постоянными коэффициентами и пользуется большой популярностью у инженеров. Метод был предложен известным американским электротехником и физиком О. Хевисайдом (892 г.). Он предложил формальные правила обращения с оператором d dx и некоторыми функциями от этого оператора, используя которые решил ряд важнейших задач электродинамики. Однако операционное исчисление не получило в трудах О. Хевисайда математического обоснования («его математика возникала в физическом контексте, из которого ее нелегко было выделить» [, с. 8]), многие его результаты оставались недоказанными. Лишь в 2-е годы XX века метод получил обоснование в работах Бромвича (T. J. I A. Bromwich) и Карсона (J. R. Carson) 2.. Понятие оригинала и изображения по Лапласу Определение. Функцией-оригиналом называется любая комплекснозначная функция f(x) действительного аргумента x, удовлетворяющая условиям:) f(x) непрерывна при x, за исключением, быть может, конечного числа точек точек разрыва -го рода; 2) для всех x < f(x) = ; 3) существуют такие постоянные M > и a >, при которых f(x) M e ax для x. () Дифференциальные и интегральные уравнения: учебное пособие для студентов физико-технического факультета: в 3 ч. Часть 2 / cост. : Н. Ю. Светова, Е. Е. Семёнова. Петрозаводск: Изд-во ПетрГУ, Попытки строгого обоснования и «математически приемлемого» изложения исчисления напоминали «общий штурм» английский математик Бромвич (96), американский инженер Карсон (925), голландский инженер-электрик Ван-дер-Поль () привлекли результаты различных теорий, связали исчисление Хевисайда с преобразованием Лапласа, с теорией функций комплексной переменной .

2 2 Точная нижняя грань a всех чисел a, для которых справедливо неравенство (), называется показателем роста функции f(x). Заметим, что для любой ограниченной функции показатель роста a =. Простейшим оригиналом является функция Хевисайда {, x ; χ(x) =, x <. Очевидно, для любой функции ϕ(x) { ϕ(x), x, ϕ(x) χ(x) =, x <. Если при x функция ϕ(x) удовлетворяет условиям и 3 определения, то функция ϕ(x)χ(x) является оригиналом. В дальнейшем для сокращения записи будем, как правило, записывать ϕ(x) вместо ϕ(x)χ(x), считая, что рассматриваемые нами функции продолжены нулем для отрицательных значений аргумента x. Определение 2. Функция F (p) комплексного переменного p (p C), определяемая интегралом F (p) = e px f(x) dx, () называется преобразованием Лапласа, или изображением по Лапласу 3, функции f(x). Для указания соответствия между оригиналом и изображением будем использовать следующую запись 4: f(x) F (p). 3 В мемуарах П. Лапласа (782 82) современные оригинал и изображение именуются fonction determinant и fonction generatrice «определяющая функция» и «производящая». Эти названия, хотя и признанные неудачными, сохранились до XX в. Хевисайд употреблял названия «подоператорная функция» (892). Оператор он обозначал буквой p, которая употребляется в современном исчислении . 4 Названия original и image и знак предложил Ван дер Поль в статьях гг. В русской литературе термин изображение и символ, по-видимому, впервые появились в книге харьковских математиков А. М. Эфроса и А. М. Данилевского «Операционное исчисление и контурные интегралы» (937), а термин оригинал только в 953 г. . Используются и другие варианты записи соответствия между оригиналами и изображениями. Например, f(x) F (p) или L{f(x)} = F (p).

3 Для любого оригинала f(x) его изображение F (p) определено в полуплоскости Re p > a (a показатель роста функции f(x)), где несобственный интеграл () сходится. Пример. Пользуясь определением, найти изображение функции f(x) = sin 3x. Решение. Для функции f(x) = sin 3x имеем a =. Поэтому изображение F (p) будет определено в полуплоскости Re p >. Применим формулу () к заданной функции, используя при выполнении преобразований правило интегрирования по частям и ограничение на множество значений переменной p, обеспечивающее сходимость интеграла: F (p) = + e px sin 3x dx = = p e px sin 3x x= = 3 p p e px cos 3x = 3 p 2 9 p 2 Получили равенство: Откуда находим + x=+ + 3 p x=+ x= + 3 p e px cos 3x dx = + e px sin 3x dx = 3 p 2 9 p 2 F (p). F (p) = 3 p 2 9 p 2 F (p). F (p) = 3 p Таким образом, справедливо следующее соответствие: sin 3x 3 p 2, Re p >. + 9 e px sin 3x dx = 3

4 4 2. Свойства преобразования Лапласа На практике при построении изображений используются различные приемы, основанные на свойствах преобразования Лапласа. Перечислим основные свойства, справедливость которых легко установить с помощью определений изображения и оригинала.. Свойство линейности. Если f(x) F (p), g(x) G(p), то для любых α, β C αf(x) + βg(x) αf (p) + βg(p), Re p > max(a, b). Здесь и далее a, b показатели роста функций f(x) и g(x) соответственно. 2. Теорема подобия. Если f(x) F (p), то для любого α > f(αx) α F (p α), Re p > αa. 3. Теорема смещения. Если f(x) F (p), то для любого λ C e λx f(x) F (p λ), Re p > a + Re λ. 4. Дифференцирование оригинала. Пусть функция f(x) n раз дифференцируема. Тогда f (x) pf (p) f(+), f (x) p 2 F (p) pf(+) f (+), f (n) (x) p n F (p) p n f(+)... pf (n 2) (+) f (n) (+), где f (k) (+) = lim x + f (k) (x), k =, n. Замечание. При построении изображений производных непрерывных в нуле функций в записи аргумента функции и ее производных знак "плюс"опускается. 5. Дифференцирование изображения. Если f(x) F (p), то В частности, при n = имеем F (n) (p) (x) n f(x), Re p >. F (p) xf(x).

5 5 6. Интегрирование оригинала. Если f(x) F (p), то x f(ξ) dξ F (p) p, Re p > α. 7. Интегрирование изображения. Если интеграл и F (p) f(x), то p F (p) dp f(x) x, Re p > α. p F (p) dp сходится 8. Теорема об умножении изображений (теорема о свертке) Если f(x) F (p), g(x) G(p), то F (p)g(p) x f(t)g(x t) dt = x f(x t)g(t) dt, когда Re p > max(a, b). Интегралы в правой части соответствия называют сверткой функций f(x) и g(x). 9. Теорема запаздывания. Если f(x) F (p), то для любого ξ > f(x ξ)χ(x ξ) e ξp F (p), Re p > α. Оригинал по изображению восстанавливается единственным образом, с точностью до значений в точках разрыва. На практике обычно используют готовые таблицы оригиналов и изображений 5. В таблице перечислены основные оригиналы и изображения, часто встречающиеся в приложениях. Пример 2. Используя свойства преобразования Лапласа и таблицу основных оригиналов и изображений, найти изображения следующих функций:) f(x) = e 4x sin 3x cos 2x; 3) f(x) = x 2 e 3x ; 2) f(x) = e (x 2) sin (x 2); 4) f(x) = sin2 x x. 5 Диткин В. А., Прудников А. П. Справочник по операционному исчислению. М., 965.

6 6 Таблица. Основные оригиналы и изображения Оригинал Изображение Оригинал Изображение p cos ωx p p 2 + ω 2 x n n! p n+ e λx p + λ sin ωx x cos ωx x n e λx n! (p + λ) n+ x sin ωx ω p 2 + ω 2 p 2 ω 2 (p 2 + ω 2) 2 2pω (p 2 + ω 2) 2 Решение.) Преобразуем выражение для функции f(x) следующим образом: f(x) = e 4x sin 3x cos 2x = 2 e 4x (sin 5x + sin x) = = 2 e 4x sin 5x + 2 e 4x sin x. Так как sin x 5 p 2 и sin 5x + p , то, используя свойство линейности и теорему смещения, для изображения функции f(x) будем иметь: F (p) = () 5 2 (p + 4) (p + 4)) Так как sin x p 2 +, ex sin x (p) 2 +, то, используя теорему запаздывания, будем иметь f(x) = e x 2 sin (x 2) F (p) = e 2p (p)) Так как x 2 2 p 3, то по теореме смещения имеем: f(x) = x 2 e 3x F (p) = 2 (p 3) 3.

7 Приведем для сравнения способ построения изображения функции f(x) = x 2 e 3x с применением свойства дифференцирования изображения: Получили тот же результат. 4) Так как e 3x p 3 ; xe 3x d () = dp p 3 (p 3) 2 ; x 2 e 3x d () 2 dp (p 3) 2 = (p 3) 3. sin 2 x = 2 2 cos 2x 2p 2 p p 2 + 4, то, используя свойство интегрирования изображения, будем иметь: sin 2 x (x 2p) 2 p p 2 dp = + 4 p (= 4 ln p2) 4 ln(p2 + 4) = p 4 ln p 2 p p = 4 ln p2 + 4 p Восстановление оригинала по изображению Пусть изображение Y (p) представляет собой правильную рациональную дробь (является рациональной функцией). Если дробь разложить на сумму простейших (элементарных) дробей, то для каждой из них соответствующий оригинал можно найти, используя свойства преобразования Лапласа и таблицу оригиналов и их изображений. Действительно, A p a A eax ; A (p a) n A (n)! xn e ax.

8 8 Выполнив преобразования дроби Ap + B A(p a) + aa + B A(p a) (p a) 2 = + b2 (p a) 2 + b 2 = (p a) 2 + b 2 + aa + B (p a) 2 + b 2, получим Ap + B (p a) 2 + b 2 A eax cos bx + aa + B e ax sin bx. b Для построения оригинала, соответствующего дроби Ap + B ((p a) 2 + b 2) n, можно воспользоваться теоремой умножения. Например, при n = 2 имеем Ap + B ((p a) 2 + b 2) 2 = Ap + B (p a) 2 + b 2 (p a) 2 + b 2. Так как и то При n = 3: Ap + B (p a) 2 + b 2 A eax cos bx + aa + B e ax sin bx = h (x) b (p a) 2 + b 2 b eax sin bx = g(x), Ap + B ((p a) 2 + b 2) 2 = x Ap + B ((p a) 2 + b 2) 2 (p a) 2 + b 2 g(x t) h (t) dt = h 2 (t). x g(x t) h 2 (t) dt, Аналогично можно рассматривать восстановление оригиналов и при n > 3. Знаменатель рациональной функции Y (p) есть многочлен порядка k. Если он имеет k различных нулей p i, i =, k, то, разложив

9 знаменатель на множители (p p i), соответствующий оригинал для Y (p) можно найти по формуле: y(x) = k (Y (p)(p p i)e px) p=pi. (2) i= Произведение Y (p)(p p i) дает рациональную функцию, знаменатель которой не содержит множителя (p p i), и вычисленное при p = p i определяет коэффициент, с которым дробь входит в p p i разложение функции Y (p) на сумму элементарных дробей. Пример 3. Найти оригинал, соответствующий изображению: Y (p) = p 3 p. Решение. Разложив заданное изображение на сумму элементарных дробей: p 3 p = p(p)(p +) = p + 2(p) + 2(p +), найдем оригинал Ответ: y(x) = + ch x. y(x) = + 2 ex + 2 e x = + ch x. Пример 4. Найти оригинал для изображения: Y (p) = p(p 2 +). Решение. Так как p 2 sin x, то, применяя свойство интегрирования оригинала, + получим: p(p 2 +) x Ответ: y(x) = cos x. sin t dt = cos t x = cos x. Пример 5. Найти оригинал, соответствующий изображению: Y (p) = (p 2 + 4) 2. 9

10 Решение. Применяя свойство изображения свертки, будем иметь: Y (p) = (p 2 + 4) 2 = p p x sin 2(x t) sin 2t dt. Вычислив интеграл, получим искомое выражение для оригинала. Ответ: y(x) = 6 sin 2x x cos 2x. 8 Пример 6. Найти оригинал, соответствующий изображению: Y (p) = p p 3 p 2 6p. Решение. Так как p 3 p 2 6p = p(p 3)(p + 2), то знаменатель дроби Y (p) имеет три простых корня: p =, p 2 = 3 и p 3 = 2. Построим соответствующий оригинал с помощью формулы (2): y(x) = (p2 + 2)e px (p 3)(p + 2) + (p2 + 2)e px p= p(p + 2) + (p2 + 2)e px p=3 p(p 3) = p= 2 = e3x e 2x. Пример 7. Найти оригинал, соответствующий изображению: Y (p) = e p 2 p(p +)(p 2 + 4). Решение. Представим дробь, входящую в выражение в виде простейших дробей: p(p +)(p 2 + 4) = A p + B p + + Cp + D p Применяя к разложению метод неопределенных коэффициентов, получим: Изображение примет вид: A = 4 ; B = D = 5 ; C = 2. Y (p) = e p 2 4 p 5 e p 2 p + pe p 2 2 p e p 2 5 p (а)

11 Используя соотношения: p χ(x), p + e x χ(x), p p cos 2x χ(x), p sin 2x χ(x) 2 и учитывая теорему запаздывания, получим для изображения (а) искомый оригинал. Ответ: y(x) = (4 5 e (x 2) cos (2x) sin (2x) 2) χ (x) Решение задачи Коши для дифференциального уравнения с постоянными коэффициентами Метод решения различных классов уравнений с помощью преобразования Лапласа получил название операционного метода. Свойство преобразования Лапласа дифференцирование оригинала позволяет сводить решение линейных дифференциальных уравнений с постоянными коэффициентами к решению алгебраических уравнений. Рассмотрим задачу Коши для неоднородного уравнения с начальными условиями y (n) + a y (n) a n y + a n y = f(x) (3) y() = y, y () = y,..., y (n) () = y n. (4) Пусть для функции f(x) и искомого решения выполнены условия существования преобразования Лапласа. Обозначим через Y (p) изображение неизвестной функции (оригинала) y(x), а через F (p) изображение правой части f(x): y(x) Y (p), f(x) F (p). По правилу дифференцирования оригинала имеем y (x) py (p) y, y (x) p 2 Y (p) py y, y (n) (x) p n Y (p) p n y p n 2 y... y n.

12 2 Тогда в силу свойства линейности преобразования Лапласа после его применения к левой и правой частям уравнения (3) получим операторное уравнение M(p)Y (p) N(p) = F (p), (5) где M(p) характеристический многочлен уравнения (3): M(p) = p n + a p n a n p + a n y, N(p) многочлен, содержащий начальные данные задачи Коши (обращается в нуль при нулевых начальных данных): N(p) = y (p n + a p n a n) + + y (p n 2 + a p n a n 2) y n 2 (p + a) + y n, F (p) изображение функции f(x). Разрешая операторное уравнение (5), получаем изображение Лапласа Y (p) искомого решения y(x) в виде Y (p) = F (p) + N(p). M(p) Восстанавливая оригинал для Y (p), находим решение уравнения (3), удовлетворяющее начальным условиям (4). Пример 8. Найти решение дифференциального уравнения: y (x) + y(x) = e x, удовлетворяющее условию: y() =. Решение. Пусть y(x) Y (p). Так как y (x) py (p) y() = py (p), e x p +, то, применив к заданному уравнению преобразование Лапласа, используя свойство линейности, получим алгебраическое уравнение относительно Y (p): py (p) + Y (p) = p +. Откуда находим выражение для Y (p):

13 Так как то имеем Y (p) = p + e x, (p +) 2 + p +. (p +) 2 xe x, Y (p) y(x) = e x x + e x. Проверка: Покажем, что найденная функция действительно является решением задачи Коши. Подставляем выражение для функции y(x) и ее производной в заданное уравнение: y (x) = e x x + e x e x = e x x e x x + e x x + e x = e x. После приведения подобных слагаемых в левой части уравнения получаем верное тождество: e x e x. Таким образом, построенная функция является решением уравнения. Проверим, удовлетворяет ли она начальному условию y() = : y() = e + e =. Следовательно, найденная функция является решением задачи Коши. Ответ: y(x) = e x x + e x. Пример 9. Решить задачу Коши y + y =, y() =, y () =. Решение. Пусть y(x) Y (p). Так как 3 y (x) p 2 Y (p) py() y (), /p, то, применив к уравнению преобразование Лапласа, с учетом начальных условий получим (p 2 +)Y (p) = p = Y (p) = p(p 2 +). Разложим дробь на простейшие дроби: Y (p) = p По таблице найдем y(x) = cos x. p p 2 +.

14 4 Восстановить оригинал по изображению можно и применив свойство интегрирования оригинала (см. пример 4). Ответ: y(x) = cos x. Пример. Решить задачу Коши y +3y = e 3x, y() =, y () =. Решение. Пусть y(x) Y (p). Так как y py (p) y(), y (x) p 2 Y (p) py() y (), и e 3x p + 3, то, учитывая начальные условия, получим операторное уравнение (p 2 + 3p)Y (p) + = p + 2 = Y (p) = p + 3 (p + 3) 2 p. Разложим рациональную функцию на простейшие дроби: p + 2 (p + 3) 2 p = A p + B p C (p + 3) 2 = A(p2 + 6p + 9) + B(p 2 + 3p) + Cp p(p + 3) 2. Составим систему уравнений для нахождения коэффициентов A, B и C: A + B =, 6A + 3B + C =, 9A = 2, решая которую найдем A = 2/9, B = 2/9, C = /3. Следовательно, Y (p) = 2 9 p p (p + 3) 2. Используя таблицу получим ответ. Ответ: y(x) = e 3x 3 xe 3x. Пример. Найти решение дифференциального уравнения: y (x) + 2y (x) + 5y (x) =, удовлетворяющее условиям: y() =, y () = 2, y () =. Решение. Пусть y(x) Y (p). Так как, учитывая заданные условия, имеем y (x) p Y (p) y() = py (p) () = py (p) +, y (x) p 2 Y (p) p y() y () = = p 2 Y (p) p () 2 = p 2 Y (p) + p 2, y (x) p 3 Y (p) p 2 y() p y () y () = = p 3 Y (p) p 2 () p 2 = p 3 Y (p) + p 2 2p,

15 то после применения к заданному уравнению преобразования Лапласа получим следующее операторное уравнение: p 3 Y (p) + p 2 2p + 2p 2 Y (p) + 2p 4 + 5pY (p) + 5 = или после преобразований: Y (p) (p 3 + 2p 2 + 5p) = p 2. Решая это уравнение относительно Y (p), получим Y (p) = p 2 p(p 2 + 2p + 5). Полученное выражение разложим на простые дроби: p 2 p(p 2 + 2p + 5) = A p + Bp + C p 2 + 2p + 5. С помощью метода неопределенных коэффициентов найдем A, B, C. Для этого приведем дроби к общему знаменателю и приравняем коэффициенты при равных степенях p: p 2 p(p 2 + 2p + 5) = Ap2 + 2Ap + 5A + Bp 2 + Cp p(p p + 5) Получим систему алгебраических уравнений относительно A, B, C: решением которой будут: A + B =, 2A + C =, 5A =, A = 5, B = 4 5, C = 2 5. Тогда Y (p) = 5p + 5 4p + 2 p 2 + 2p + 5. Чтобы найти оригинал второй дроби, выделим в ее знаменателе полный квадрат: p 2 + 2p + 5 = (p +) 2 + 4, тогда в числителе выделим слагаемое p+: 4p+2 = 4(p+)+6 и разложим дробь на сумму двух дробей: 5 4p + 2 p 2 + 2p + 5 = 4 5 p + (p +) (p +) Далее, воспользовавшись теоремой смещения и таблицей соответствия изображений и оригиналов, получим решение исходного уравнения. Ответ: y(x) = e x cos 2x e x sin 2x.

16 6 Операционным методом может быть построено и общее решение уравнения (3). Для этого надо конкретные значения y, y,..., y (n) начальных условий заменить на произвольные постоянные C, C 2,..., C n. Список литературы. Александрова Н. В. История математических терминов, понятий, обозначений: Словарь-справочник. М.: Изд-во ЛКИ, с. 2. Васильева А. Б. Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах / А. Б. Васильева, Г. Н. Медведев, Н. А. Тихонов, Т. А. Уразгильдина. М.: ФИЗ- МАТЛИТ, с. 3. Сидоров Ю. В. Лекции по теории функций комплексного переменного /Ю. В. Сидоров, М. В. Федорюк, М. И. Шабунин.М.: Наука, 989.


ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ Операционное исчисление относится к символическим исчислениям, в основе которых лежат построение математического анализа как системы формальных операций над искусственно введенным

Занятие 18 Оригиналы и их изображения Операционное исчисление один из методов математического анализа, который мы будем применять к решению дифференциальных уравнений и систем. Суть применения этого метода

Уравнения математической физики Сборник примеров и упражнений Петрозаводск 1 Петрозаводский государственный университет Математический факультет Уравнения математической физики Сборник примеров и упражнений

Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

1 Тема 4. Операторный метод решения линейных дифференциальных уравнений и систем 4.1 Преобразование Лапласа Оригиналом называется любая функция f(t) действительного переменного t, удовлетворяющая следующим

ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ ИЗДАТЕЛЬСТВО ТГТУ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «Тамбовский государственный технический университет» ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ

Математический анализ Раздел: операционное исчисление Тема: Преобразование Лапласа и его свойства Лектор Пахомова Е.Г. 2011 г. 11. Оригинал и изображение. Теорема обращения ОПРЕДЕЛЕНИЕ 1. Пусть:R C. Функция

Комплексные числа, функции и действия над ними y модуль R действительная часть действ число, yim мнимая часть действительное число iy алгебраическая форма записи компл числа Главное значение аргумента

Решение типовых вариантов контрольной работы по теме Интегралы функции одной переменной Методические указания УДК 517.91 Методические указания содержат подробные решения типовых вариантов контрольной работы

Глава 1 Операционное исчисление. 1. Определение преобразования Лапласа. Преобразование Лапласа ставит в соответствие функции f(t) действительной переменной t функцию F () комплексной переменной = x + iy

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» Кафедра «Высшая и вычислительная

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА НИКОЛАЯ II» Кафедра «Высшая и вычислительная математика»

82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Лекция ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ Рациональные дроби Интегрирование простейших рациональных дробей Разложение рациональной дроби на простейшие дроби Интегрирование рациональных дробей Рациональные

ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(,) y() d+ f(), [, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Лекция 6 Операционное исчисление Преобразование Лапласа Образы простых функций Основные свойства преобразования Лапласа Изображение производной оригинала Операционное исчисление Преобразование Лапласа

Занятие 19 Решение дифференциальных уравнений и систем операционным методом 19.1 Решение линейных дифференциальных уравнений с постоянными коэффициентами Пусть требуется найти частное решение линейного

2.2. Операторный метод расчета переходных процессов. Теоретические сведения. Расчет переходных процессов в сложных цепях классическим методом очень часто затруднен нахождением постоянных интегрирования.

ДОРОХОВ ВМ РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ОПЕРАЦИОННОМУ ИСЧИСЛЕНИЮ МОСКВА, 4 ПРЕДИСЛОВИЕ В настоящем учебном пособии изложены теоретические основы операционного исчисления Излагаются методы решения задач

Министерство образования и науки Российской Федерации ФГБОУ ВПО «Российский химико-технологический университет им ДИ Менделеева» Новомосковский институт (филиал) Контрольная работа 8 по математике (Операционное

УДК 53.7 ОБ ОДНОМ МЕТОДЕ НАХОЖДЕНИЯ ЧАСТНОГО РЕШЕНИЯ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Жаныбекова А.А., [email protected] Казахстанско-Британский технический университет,

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ Первообразная функция и неопределённый интеграл первообразной Лемма Функция F(называется первообразной для функции f(на промежутке X, если F (= f(X Функция,

Уравнения первого порядка, не разрешенные относительно производной Будем рассматривать уравнения первого порядка, не разрешенные относительно производной: F (x, y, y) = 0, (1) где F заданная функция своих

II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен научиться: находить тригонометрическую и показательную формы комплексного числа по

Министерство образования и науки Российской Федерации «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского Кафедра «Высшая математика» Комплексные числа и операционное исчисление

1 Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 3.1 Линейное однородное уравнение Дифференциальное уравнение вида y (n) + a n 1 y (n 1) +... + a 1 y + a 0 y = 0, (3.1) где a

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Первообразная и неопределённый интеграл Основная задача дифференциального исчисления состоит в нахождении производной (или дифференциала) данной функции. Интегральное исчисление

Министерство образования и науки РФ Ачинский филиал федерального государственного автономного образовательного учреждения высшего профессионального образования «Сибирский федеральный университет» МАТЕМАТИКА

Предел функции. Актуальность изучения темы Теория пределов играет основополагающую роль в математическом анализе, позволяет определить характер поведения функции при заданном изменении аргумента. С помощью

Первообразная и неопределенный интеграл Основные понятия и формулы 1. Определение первообразной и неопределенного интеграла. Определение. Функция F(x) называется первообразной для функции f(x) на промежутке

Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Методическая разработка Решение задач по ТФКП Комплексные числа Операции над комплексными числами Комплексная плоскость Комплексное число можно представить в алгебраической и тригонометрической экспоненциальной

Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Типового варианта «Комплексные числа Многочлены и рациональные дроби» Задание Даны два комплексных числа и cos sn Найдите и результат запишите в алгебраической форме результат запишите в тригонометрической

Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

С П ПРЕОБРАЖЕНСКИЙ, СР ТИХОМИРОВ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ 987 ОГЛАВЛЕНИЕ Предисловие Формулировка задания 3 Варианты задания 3 Пример выполнения задания и комментарии

Математический анализ Раздел: Неопределенный интеграл Тема: Интегрирование рациональных дробей Лектор Пахомова Е.Г. 0 г. 5. Интегрирование рациональных дробей ОПРЕДЕЛЕНИЕ. Рациональной дробью называется

Министерство транспорта Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» Институт экономики и финансов

ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ Преобразование Лапласа и формула обращения Пусть в промежутке Дирихле а именно: Интеграл Фурье (l l) а) ограничена на этом отрезке; функция удовлетворяет условиям б) кусочно-непрерывна

Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

57 Рассмотрим интегрирование простейшей рациональной дроби четвертого типа (M N) d () p q p Сделаем замену переменной, положив d. где a p q. Тогда Интеграл M N d p p p q q a, M p N Mp q d M (p q) p

Дифференциальное уравнение n-го порядка называется линейным, если оно первой степени относительно функции y и её производных y..., y (n) т. е. имеет вид a 0 y (n) + a 1 y (n 1) +... + a ny = f (x), где

Математический анализ Раздел: Неопределенный интеграл Тема: Интегрирование рациональных дробей Лектор Рожкова С.В. 0 г. 5. Интегрирование рациональных дробей ОПРЕДЕЛЕНИЕ. Рациональной дробью называется

Министерство связи и массовых коммуникаций Российской Федерации Государственное образовательное учреждение высшего профессионального образования ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ

Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ()

Т А Матвеева В Б ветличная Д К Агишева А Зотова ПЕЦИАЛЬНЫЕ ГЛАВЫ МАТЕМАТИКИ: ОПЕРАЦИОННОЕ ИЧИЛЕНИЕ ФЕДЕРАЛЬНОЕ АГЕНТТВО ПО ОБРАЗОВАНИЮ ВОЛЖКИЙ ПОЛИТЕХНИЧЕКИЙ ИНТИТУТ ФИЛИАЛ ГОУДАРТВЕННОГО ОБРАЗОВАТЕЛЬНОГО

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ Первообразная функция и неопределённый интеграл первообразной Функция F() называется первообразной для функции f() на промежутке X, если F / () = f() X.

5. 4 Основные методы интегрирования Непосредственное интегрирование. Вычисление интегралов, основанное на приведение подынтегрального выражения к табличной форме и использование свойств неопределенного

Лекция 3 Математическое описание систем управления В теории управления при анализе и синтезе систем управления имеют дело с их математической моделью Математическая модель САУ представляет собой уравнения

Интегрирование системы дифференциальных уравнений методом исключения переменных Один из основных методов интегрирования системы дифференциальных уравнений заключается в следующем: из уравнений нормальной

Уравнения в частных производных первого порядка Некоторые задачи классической механики, механики сплошных сред, акустики, оптики, гидродинамики, переноса излучения сводятся к уравнениям в частных производных

Простейшие неопределенные интегралы Примеры решения задач Следующие интегралы сводятся к табличным путем тождественного преобразования подынтегрального выражения. 1. dx = dx = 2x 2/3 /3 + 2x 1/2 + C. >2.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Интегрирование рациональных дробей Рациональной дробью называется дробь вида P Q, где P и Q многочлены Рациональная дробь называется правильной, если степень многочлена P ниже степени

[Ф] Филиппов АВ Сборник задач по дифференциальным уравнениям Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика» 00 URL: http://librarbsaz/kitablar/846pf [М] Матвеев НМ Сборник задач и упражнений по

Е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр Найти разложения функции в степенной ряд по степеням, вычислить радиус сходимости степенного ряда: A f()

Задача 1.1. Найти в указанной области отличные от тождественного нуля решения y = y(x) дифференциального уравнения, удовлетворяющие заданным краевым условиям (задача Штурма-Лиувилля) Решение: Рассмотрим

9. Первообразная и неопределенный интеграл 9.. Пусть на промежутке I R задана функция f(). Функцию F () называют первообразной функции f() на промежутке I, если F () = f() для любого I, и первообразной

~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K(удовлетворяет следующим условиям: K(s) симметрическое, непрерывное по совокупности переменных на [, ]

Министерство образования Республики Беларусь Белорусский государственный университет Физический факультет Кафедра высшей математики и математической физики О А Кононова, Н И Ильинкова, Н К Филиппова Линейные

Тема 9 Степенные ряды Степенным рядом называется функциональный ряд вида при этом числа... коэффициентами ряда, а точка разложения ряда.,...,... R... называются центром Степенные ряды Общий член степенного

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Интегралы и дифференциальные уравнения Модуль 1. Неопределенный интеграл Лекция 1.2 Аннотация Рациональные дроби. Разложение правильной рациональной дроби на сумму простейших. Интегрирование простейших

На дворе знойная пора, летает тополиный пух, и такая погода располагает к отдыху. За учебный год у всех накопилась усталость, но ожидание летних отпусков/каникул должно воодушевлять на успешную сдачу экзаменов и зачетов. По сезону тупят, кстати, и преподаватели, поэтому скоро тоже возьму тайм-аут для разгрузки мозга. А сейчас кофе, мерный гул системного блока, несколько дохлых комаров на подоконнике и вполне рабочее состояние… …эх, блин,… поэт хренов.

К делу. У кого как, а у меня сегодня 1 июня, и мы рассмотрим ещё одну типовую задачу комплексного анализа – нахождение частного решения системы дифференциальных уравнений методом операционного исчисления . Что необходимо знать и уметь, чтобы научиться её решать? Прежде всего, настоятельно рекомендую обратиться к уроку. Пожалуйста, прочитайте вводную часть, разберитесь с общей постановкой темы, терминологией, обозначениями и хотя бы с двумя-тремя примерами. Дело в том, что с системами диффуров всё будет почти так же и даже проще!

Само собой, вы должны понимать, что такое система дифференциальных уравнений , что значит найти общее решение системы и частное решение системы.

Напоминаю, что систему дифференциальных уравнений можно решить «традиционным» путём: методом исключения или с помощью характеристического уравнения . Способ же операционного исчисления, о котором пойдет речь, применим к системе ДУ, когда задание сформулировано следующим образом:

Найти частное решение однородной системы дифференциальных уравнений , соответствующее начальным условиям .

Как вариант, система может быть и неоднородной – с «довесками» в виде функций и в правых частях:

Но, и в том, и в другом случае нужно обратить внимание на два принципиальных момента условия:

1) Речь идёт только о частном решении .
2) В скобочках начальных условий находятся строго нули , и ничто другое.

Общий ход и алгоритм будет очень похож на решение дифференциального уравнения операционным методом . Из справочных материалов потребуется та же таблица оригиналов и изображений .

Пример 1


, ,

Решение: Начало тривиально: с помощью таблицы преобразования Лапласа перейдем от оригиналов к соответствующим изображениям. В задаче с системами ДУ данный переход обычно прост:

Используя табличные формулы №№1,2, учитывая начальное условие , получаем:

Что делать с «игреками»? Мысленно меняем в таблице «иксы» на «игреки». Используя те же преобразования №№1,2, учитывая начальное условие , находим:

Подставим найденные изображения в исходное уравнение :

Теперь в левых частях уравнений нужно собрать все слагаемые, в которых присутствует или . В правые части уравнений необходимо «оформить» все остальные слагаемые:

Далее в левой части каждого уравнения проводим вынесение за скобки:

При этом на первых позициях следует разместить , а на вторых позициях :

Полученную систему уравнений с двумя неизвестными обычно решают по формулам Крамера . Вычислим главный определитель системы:

В результате расчёта определителя получен многочлен .

Важный технический приём! Данный многочлен лучше сразу же попытаться разложить на множители. В этих целях следовало бы попробовать решить квадратное уравнение , но, у многих читателей намётанный ко второму курсу глаз заметит, что .

Таким образом, наш главный определитель системы:

Дальнейшая разборка с системой, слава Крамеру, стандартна:

В итоге получаем операторное решение системы :

Преимуществом рассматриваемого задания является та особенность, что дроби обычно получаются несложными, и разбираться с ними значительно проще, нежели с дробями в задачах нахождения частного решения ДУ операционным методом . Предчувствие вас не обмануло – в дело вступает старый добрый метод неопределённых коэффициентов , с помощью которого раскладываем каждую дробь на элементарные дроби:

1) Разбираемся с первой дробью:

Таким образом:

2) Вторую дробь разваливаем по аналогичной схеме, при этом корректнее использовать другие константы (неопределенные коэффициенты):

Таким образом:


Чайникам советую записывать разложенное операторное решение в следующем виде:
– так будет понятней завершающий этап – обратное преобразование Лапласа.

Используя правый столбец таблицы, перейдем от изображений к соответствующим оригиналам:


Согласно правилам хорошего математического тона, результат немного причешем:

Ответ:

Проверка ответа осуществляется по стандартной схеме, которая детально разобрана на уроке Как решить систему дифференциальных уравнений? Всегда старайтесь её выполнять, чтобы забить большой плюс в задание.

Пример 2

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений, соответствующее заданным начальным условиям.
, ,

Это пример для самостоятельного решения. Примерный образец чистового оформления задачи и ответ в конце урока.

Решение неоднородной системы дифференциальных уравнений алгоритмически ничем не отличается, разве что технически будет чуть сложнее:

Пример 3

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений, соответствующее заданным начальным условиям.
, ,

Решение: С помощью таблицы преобразования Лапласа, учитывая начальные условия , перейдем от оригиналов к соответствующим изображениям:

Но это ещё не всё, в правых частях уравнений есть одинокие константы. Что делать в тех случаях, когда константа находится сама по себе в полном одиночестве? Об этом уже шла речь на уроке Как решить ДУ операционным методом . Повторим: одиночные константы следует мысленно домножить на единицу , и к единицам применить следующее преобразование Лапласа:

Подставим найденные изображения в исходную систему:

Налево перенесём слагаемые, в которых присутствуют , в правых частях разместим остальные слагаемые:

В левых частях проведём вынесение за скобки, кроме того, приведём к общему знаменателю правую часть второго уравнения:

Вычислим главный определитель системы, не забывая, что результат целесообразно сразу же попытаться разложить на множители:
, значит, система имеет единственное решение.

Едем дальше:



Таким образом, операторное решение системы:

Иногда одну или даже обе дроби можно сократить, причём, бывает, так удачно, что и раскладывать практически ничего не нужно! А в ряде случаев сразу получается халява, к слову, следующий пример урока будет показательным образцом.

Методом неопределенных коэффициентов получим суммы элементарных дробей.

Сокрушаем первую дробь:

И добиваем вторую:

В результате операторное решение принимает нужный нам вид:

С помощью правого столбца таблицы оригиналов и изображений осуществляем обратное преобразование Лапласа:

Подставим полученные изображения в операторное решение системы:

Ответ: частное решение:

Как видите, в неоднородной системе приходится проводить более трудоёмкие вычисления по сравнению с однородной системой. Разберём еще пару примеров с синусами, косинусами, и хватит, поскольку будут рассмотрены практически все разновидности задачи и большинство нюансов решения.

Пример 4

Методом операционного исчисления найти частное решение системы дифференциальных уравнений с заданными начальными условиями ,

Решение: Данный пример я тоже разберу сам, но комментарии будут касаться только особенных моментов. Предполагаю, вы уже хорошо ориентируетесь в алгоритме решения.

Перейдем от оригиналов к соответствующим изображениям:

Подставим найденные изображения в исходную систему ДУ:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.

Полученный многочлен не раскладывается на множители. Что делать в таких случаях? Ровным счётом ничего. Сойдёт и такой.

В результате операторное решение системы:

А вот и счастливый билет! Метод неопределённых коэффициентов использовать не нужно вообще! Единственное, в целях применения табличных преобразований перепишем решение в следующем виде:

Перейдем от изображений к соответствующим оригиналам:

Подставим полученные изображения в операторное решение системы:

На дворе знойная пора, летает тополиный пух, и такая погода располагает к отдыху. За учебный год у всех накопилась усталость, но ожидание летних отпусков/каникул должно воодушевлять на успешную сдачу экзаменов и зачетов. По сезону тупят, кстати, и преподаватели, поэтому скоро тоже возьму тайм-аут для разгрузки мозга. А сейчас кофе, мерный гул системного блока, несколько дохлых комаров на подоконнике и вполне рабочее состояние… …эх, блин,… поэт хренов.

К делу. У кого как, а у меня сегодня 1 июня, и мы рассмотрим ещё одну типовую задачу комплексного анализа – нахождение частного решения системы дифференциальных уравнений методом операционного исчисления . Что необходимо знать и уметь, чтобы научиться её решать? Прежде всего, настоятельно рекомендую обратиться к уроку. Пожалуйста, прочитайте вводную часть, разберитесь с общей постановкой темы, терминологией, обозначениями и хотя бы с двумя-тремя примерами. Дело в том, что с системами диффуров всё будет почти так же и даже проще!

Само собой, вы должны понимать, что такое система дифференциальных уравнений , что значит найти общее решение системы и частное решение системы.

Напоминаю, что систему дифференциальных уравнений можно решить «традиционным» путём: методом исключения или с помощью характеристического уравнения . Способ же операционного исчисления, о котором пойдет речь, применим к системе ДУ, когда задание сформулировано следующим образом:

Найти частное решение однородной системы дифференциальных уравнений , соответствующее начальным условиям .

Как вариант, система может быть и неоднородной – с «довесками» в виде функций и в правых частях:

Но, и в том, и в другом случае нужно обратить внимание на два принципиальных момента условия:

1) Речь идёт только о частном решении .
2) В скобочках начальных условий находятся строго нули , и ничто другое.

Общий ход и алгоритм будет очень похож на решение дифференциального уравнения операционным методом . Из справочных материалов потребуется та же таблица оригиналов и изображений .

Пример 1


, ,

Решение: Начало тривиально: с помощью таблицы преобразования Лапласа перейдем от оригиналов к соответствующим изображениям. В задаче с системами ДУ данный переход обычно прост:

Используя табличные формулы №№1,2, учитывая начальное условие , получаем:

Что делать с «игреками»? Мысленно меняем в таблице «иксы» на «игреки». Используя те же преобразования №№1,2, учитывая начальное условие , находим:

Подставим найденные изображения в исходное уравнение :

Теперь в левых частях уравнений нужно собрать все слагаемые, в которых присутствует или . В правые части уравнений необходимо «оформить» все остальные слагаемые:

Далее в левой части каждого уравнения проводим вынесение за скобки:

При этом на первых позициях следует разместить , а на вторых позициях :

Полученную систему уравнений с двумя неизвестными обычно решают по формулам Крамера . Вычислим главный определитель системы:

В результате расчёта определителя получен многочлен .

Важный технический приём! Данный многочлен лучше сразу же попытаться разложить на множители. В этих целях следовало бы попробовать решить квадратное уравнение , но, у многих читателей намётанный ко второму курсу глаз заметит, что .

Таким образом, наш главный определитель системы:

Дальнейшая разборка с системой, слава Крамеру, стандартна:

В итоге получаем операторное решение системы :

Преимуществом рассматриваемого задания является та особенность, что дроби обычно получаются несложными, и разбираться с ними значительно проще, нежели с дробями в задачах нахождения частного решения ДУ операционным методом . Предчувствие вас не обмануло – в дело вступает старый добрый метод неопределённых коэффициентов , с помощью которого раскладываем каждую дробь на элементарные дроби:

1) Разбираемся с первой дробью:

Таким образом:

2) Вторую дробь разваливаем по аналогичной схеме, при этом корректнее использовать другие константы (неопределенные коэффициенты):

Таким образом:


Чайникам советую записывать разложенное операторное решение в следующем виде:
– так будет понятней завершающий этап – обратное преобразование Лапласа.

Используя правый столбец таблицы, перейдем от изображений к соответствующим оригиналам:


Согласно правилам хорошего математического тона, результат немного причешем:

Ответ:

Проверка ответа осуществляется по стандартной схеме, которая детально разобрана на уроке Как решить систему дифференциальных уравнений? Всегда старайтесь её выполнять, чтобы забить большой плюс в задание.

Пример 2

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений, соответствующее заданным начальным условиям.
, ,

Это пример для самостоятельного решения. Примерный образец чистового оформления задачи и ответ в конце урока.

Решение неоднородной системы дифференциальных уравнений алгоритмически ничем не отличается, разве что технически будет чуть сложнее:

Пример 3

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений, соответствующее заданным начальным условиям.
, ,

Решение: С помощью таблицы преобразования Лапласа, учитывая начальные условия , перейдем от оригиналов к соответствующим изображениям:

Но это ещё не всё, в правых частях уравнений есть одинокие константы. Что делать в тех случаях, когда константа находится сама по себе в полном одиночестве? Об этом уже шла речь на уроке Как решить ДУ операционным методом . Повторим: одиночные константы следует мысленно домножить на единицу , и к единицам применить следующее преобразование Лапласа:

Подставим найденные изображения в исходную систему:

Налево перенесём слагаемые, в которых присутствуют , в правых частях разместим остальные слагаемые:

В левых частях проведём вынесение за скобки, кроме того, приведём к общему знаменателю правую часть второго уравнения:

Вычислим главный определитель системы, не забывая, что результат целесообразно сразу же попытаться разложить на множители:
, значит, система имеет единственное решение.

Едем дальше:



Таким образом, операторное решение системы:

Иногда одну или даже обе дроби можно сократить, причём, бывает, так удачно, что и раскладывать практически ничего не нужно! А в ряде случаев сразу получается халява, к слову, следующий пример урока будет показательным образцом.

Методом неопределенных коэффициентов получим суммы элементарных дробей.

Сокрушаем первую дробь:

И добиваем вторую:

В результате операторное решение принимает нужный нам вид:

С помощью правого столбца таблицы оригиналов и изображений осуществляем обратное преобразование Лапласа:

Подставим полученные изображения в операторное решение системы:

Ответ: частное решение:

Как видите, в неоднородной системе приходится проводить более трудоёмкие вычисления по сравнению с однородной системой. Разберём еще пару примеров с синусами, косинусами, и хватит, поскольку будут рассмотрены практически все разновидности задачи и большинство нюансов решения.

Пример 4

Методом операционного исчисления найти частное решение системы дифференциальных уравнений с заданными начальными условиями ,

Решение: Данный пример я тоже разберу сам, но комментарии будут касаться только особенных моментов. Предполагаю, вы уже хорошо ориентируетесь в алгоритме решения.

Перейдем от оригиналов к соответствующим изображениям:

Подставим найденные изображения в исходную систему ДУ:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.

Полученный многочлен не раскладывается на множители. Что делать в таких случаях? Ровным счётом ничего. Сойдёт и такой.

В результате операторное решение системы:

А вот и счастливый билет! Метод неопределённых коэффициентов использовать не нужно вообще! Единственное, в целях применения табличных преобразований перепишем решение в следующем виде:

Перейдем от изображений к соответствующим оригиналам:

Подставим полученные изображения в операторное решение системы:

Как решить дифференциальное уравнение
методом операционного исчисления?

На данном уроке будет подробно разобрана типовая и широко распространенная задача комплексного анализа – нахождение частного решения ДУ 2-го порядка с постоянными коэффициентами методом операционного исчисления . Снова и снова избавляю вас от предубеждения, что материал немыслимо сложный и недоступный. Забавно, но для освоения примеров можно вообще не уметь дифференцировать, интегрировать и даже не знать, что такое комплексные числа . Потребуется навык применения метода неопределённых коэффициентов , который детально разобран в статье Интегрирование дробно-рациональных функций . Фактически краеугольным камнем задания являются обычные алгебраические действия, и я уверен, что материал доступен даже для школьника.

Сначала сжатые теоретические сведения о рассматриваемом разделе математического анализа. Основная суть операционного исчисления состоит в следующем: функция действительной переменной с помощью так называемого преобразования Лапласа отображается в функцию комплексной переменной :

Терминология и обозначения:
функция называется оригиналом ;
функция называется изображением ;
заглавной буквой обозначается преобразование Лапласа .

Говоря простым языком, действительную функцию (оригинал) по определённым правилам нужно превратить в комплексную функцию (изображение). Стрелочка обозначает именно это превращение. А сами «определенные правила» и являются преобразованием Лапласа , которое мы рассмотрим лишь формально, чего для решения задач будет вполне достаточно.

Осуществимо и обратное преобразование Лапласа, когда изображение превращается в оригинал:

Зачем всё это нужно? В ряде задач высшей математики бывает очень выгодно перейти от оригиналов к изображениям , поскольку в этом случае решение задания значительно упрощается (шутка). И как раз одну из таких задач мы и рассмотрим. Если вы дожили до операционного исчисления, то формулировка должна быть вам хорошо знакома:

Найти частное решение неоднородного уравнения второго порядка с постоянными коэффициентами при заданных начальных условиях .

Примечание: иногда дифференциальное уравнение может быть и однородным: , для него в вышеизложенной формулировке также применим метод операционного исчисления. Однако в практических примерах однородное ДУ 2-го порядка встречается крайне редко, и далее речь пойдёт о неоднородных уравнениях.

И сейчас будет разобран третий способ – решение ДУ с помощью операционного исчисления. Ещё раз подчеркиваю то обстоятельство, что речь идёт о нахождении частного решения , кроме того, начальные условия строго имеют вид («иксы» равны нулям).

К слову, об «иксах». Уравнение можно переписать в следующем виде:
, где «икс» – независимая переменная, а «игрек» – функция. Я не случайно об этом говорю, поскольку в рассматриваемой задаче чаще всего используются другие буквы:

То есть роль независимой переменной играет переменная «тэ» (вместо «икса»), а роль функции играет переменная «икс» (вместо «игрека»)

Понимаю, неудобно конечно, но лучше придерживаться обозначений, которые встречаются в большинстве задачников и методичек.

Итак, наша задача с другими буквами записывается следующим образом:

Найти частное решение неоднородного уравнения второго порядка с постоянными коэффициентами при заданных начальных условиях .

Смысл задания нисколько не изменился, изменились только буквы.

Как решить данную задачу методом операционного исчисления?

Прежде всего, потребуется таблица оригиналов и изображений . Это ключевой инструмент решения, и без неё не обойтись. Поэтому, по возможности, постарайтесь распечатать указанный справочный материал. Сразу же поясню, что обозначает буква «пэ»: комплексную переменную (вместо привычного «зет»). Хотя для решения задач этот факт не имеет особого значения, «пэ» так «пэ».

С помощью таблицы оригиналы и необходимо превратить в некоторые изображения. Далее следует ряд типовых действий, и используется обратное преобразование Лапласа (тоже есть в таблице). Таким образом, будет найдено искомое частное решение.

Все задачи, что приятно, решаются по достаточно жесткому алгоритму.

Пример 1


, ,

Решение: На первом шаге перейдем от оригиналов к соответствующим изображениям. Используем левую сторону .

Сначала разбираемся с левой частью исходного уравнения. Для преобразования Лапласа справедливы правила линейности , поэтому все константы игнорируем и по отдельности работаем с функцией и её производными.

По табличной формуле №1 превращаем функцию:

По формуле №2 , учитывая начальное условие , превращаем производную:

По формуле №3 , учитывая начальные условия , превращаем вторую производную:

Не путаемся в знаках!

Признаюсь, правильнее говорить не «формулы», а «преобразования», но для простоты время от времени буду называть начинку таблицы формулами.

Теперь разбираемся с правой частью, в которой находится многочлен . В силу того же правила линейности преобразования Лапласа, с каждым слагаемым работаем отдельно.

Смотрим на первое слагаемое: – это независимая переменная «тэ», умноженная на константу. Константу игнорируем и, используя пункт №4 таблицы, выполняем преобразование:

Смотрим на второе слагаемое: –5. Когда константа находится одна-одинёшенька, то пропускать её уже нельзя. С одиночной константой поступают так: для наглядности её можно представить в виде произведения: , а к единице применить преобразование:

Таким образом, для всех элементов (оригиналов) дифференциального уравнения с помощью таблицы найдены соответствующие изображения:

Подставим найденные изображения в исходное уравнение :

Дальнейшая задача состоит в том, чтобы выразить операторное решение через всё остальное, а именно – через одну дробь. При этом целесообразно придерживаться следующего порядка действий:

Для начала раскрываем скобки в левой части:

Приводим подобные слагаемые в левой части (если они есть). В данном случае складываем числа –2 и –3. Чайникам настоятельно рекомендую не пропускать данный этап:

Слева оставляем слагаемые, в которых присутствует , остальные слагаемые переносим направо со сменой знака:

В левой части выносим за скобки операторное решение , в правой части приводим выражение к общему знаменателю:

Многочлен слева следует разложить на множители (если это возможно). Решаем квадратное уравнение:

Таким образом:

Сбрасываем в знаменатель правой части:

Цель достигнута – операторное решение выражено через одну дробь.

Действие второе. Используя метод неопределенных коэффициентов , операторное решение уравнения следует разложить в сумму элементарных дробей:

Приравняем коэффициенты при соответствующих степенях и решим систему:

Если возникли затруднения с , пожалуйста, наверстайте упущенное в статьях Интегрирование дробно-рациональной функции и Как решить систему уравнений? Это очень важно, поскольку разложение на дроби, по существу, самая важная часть задачи.

Итак, коэффициенты найдены: , и операторное решение предстаёт перед нами в разобранном виде:

Обратите внимание, что константы записаны не в числителях дробей. Такая форма записи выгоднее, чем . А выгоднее, потому что финальное действие пройдёт без путаницы и ошибок:

Заключительный этап задачи состоит в том, чтобы с помощью обратного преобразования Лапласа перейти от изображений к соответствующим оригиналам. Используем правый столбец таблицы оригиналов и изображений .

Возможно, не всем понятно преобразование . Здесь использована формула пункта №5 таблицы: . Если подробнее: . Собственно, для похожих случаев формулу можно модифицировать: . Да и все табличные формулы пункта №5 очень легко переписать аналогичным образом.

После обратного перехода искомое частное решение ДУ получается на блюдечке с голубой каёмочкой:

Было:

Стало:

Ответ: частное решение:

При наличии времени всегда желательно выполнять проверку. Проверка выполняется по стандартной схеме, которая уже рассматривалась на уроке Неоднородные дифференциальные уравнения 2-го порядка . Повторим:

Проверим выполнение начального условия :
– выполнено.

Найдём первую производную:

Проверим выполнение второго начального условия :
– выполнено.

Найдём вторую производную:

Подставим , и в левую часть исходного уравнения :

Получена правая часть исходного уравнения.

Вывод: задание выполнено правильно.

Небольшой пример для самостоятельного решения:

Пример 2

С помощью операционного исчисления найти частное решение дифференциального уравнения при заданных начальных условиях.

Примерный образец чистового оформления задания в конце урока.

Наиболее частный гость в дифференциальных уравнениях, как многие давно заметили, экспоненты, поэтому рассмотрим несколько примеров с ними, родными:

Пример 3


, ,

Решение: С помощью таблицы преобразований Лапласа (левая часть таблицы) перейдем от оригиналов к соответствующим изображениям.

Сначала рассмотрим левую часть уравнения. Там отсутствует первая производная. Ну и что из того? Отлично. Работы поменьше. Учитывая начальные условия , по табличным формулам №№1,3 находим изображения:

Теперь смотрим на правую часть: – произведение двух функций. Для того чтобы воспользоваться свойствами линейности преобразования Лапласа, нужно раскрыть скобки: . Так как константы находятся в произведениях, то на них забиваем, и, используя группу №5 табличных формул, находим изображения:

Подставим найденные изображения в исходное уравнение:

Напоминаю, что дальнейшая задача состоит в том, чтобы выразить операторное решение через единственную дробь.

В левой части оставляем слагаемые, в которых присутствует , остальные слагаемые переносим в правую часть. Заодно в правой части начинаем потихоньку приводить дроби к общему знаменателю:

Слева выносим за скобки, справа приводим выражение к общему знаменателю:

В левой части получен неразложимый на множители многочлен . Если многочлен не раскладывается на множители, то его, бедолагу, сразу нужно сбросить на дно правой части, забетонировав ноги в тазике. А в числителе раскрываем скобки и приводим подобные слагаемые:

Наступил самый кропотливый этап: методом неопределенных коэффициентов разложим операторное решение уравнения в сумму элементарных дробей:


Таким образом:

Обратите внимание, как разложена дробь: , скоро поясню, почему именно так.

Финиш: перейдем от изображений к соответствующим оригиналам, используем правый столбец таблицы:

В двух нижних преобразованиях использованы формулы №№6,7 таблицы, и дробь предварительно раскладывалась как раз для «подгонки» под табличные преобразования.

В результате, частное решение:

Ответ: искомое частное решение:

Похожий пример для самостоятельного решения:

Пример 4

Найти частное решение дифференциального уравнения методом операционного исчисления.

Краткое решение и ответ в конце урока.

В Примере 4 одно из начальных условий равно нулю. Это, безусловно, упрощает решение, и самый идеальный вариант, когда оба начальных условия нулевые: . В этом случае производные преобразуются в изображения без хвостов:

Как уже отмечалось, наиболее сложным техническим моментом задачи является разложение дроби методом неопределенных коэффициентов , и в моём распоряжении есть достаточно трудоёмкие примеры. Тем не менее, монстрами запугивать никого не буду, рассмотрим ещё пару типовых разновидностей уравнения:

Пример 5

Методом операционного исчисления найти частное решение дифференциального уравнения, удовлетворяющее заданным начальным условиям.
, ,

Решение: С помощью таблицы преобразований Лапласа перейдем от оригиналов к соответствующим изображениям. Учитывая начальные условия :

С правой частью тоже никаких проблем:

(Напоминаю, что константы-множители игнорируются)

Подставим полученные изображения в исходное уравнение и выполняем стандартные действия, которые, я надеюсь, вы уже хорошо отработали:

Константу в знаменателе выносим за пределы дроби, главное, потом про неё не забыть:

Думал, выносить ли ещё дополнительно двойку из числителя, однако, прикинув, пришел к выводу, что данный шаг практически не упростит дальнейшего решения.

Особенностью задания является полученная дробь. Кажется, что её разложение будет долгим и трудным, но впечатление обманчиво. Естественно, бывают сложные вещи, но в любом случае – вперёд, без страха и сомнений:

То, что некоторые коэффициенты получились дробными, смущать не должно, такая ситуация не редкость. Лишь бы техника вычислений не подвела. К тому же, всегда есть возможность выполнить проверку ответа.

В результате, операторное решение:

Перейдем от изображений к соответствующим оригиналам:

Таким образом, частное решение: